Skip to main content

Completion Token Usage & Cost

By default LiteLLM returns token usage in all completion requests (See here)

However, we also expose 5 public helper functions to calculate token usage across providers:

  • token_counter: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.

  • cost_per_token: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in __init__.py and also as a community resource.

  • completion_cost: This returns the overall cost (in USD) for a given LLM API Call. It combines token_counter and cost_per_token to return the cost for that query (counting both cost of input and output).

  • get_max_tokens: This returns a dictionary for a specific model, with it's max_tokens, input_cost_per_token and output_cost_per_token

  • model_cost: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token List of all models (📣 This is a community maintained list. Contributions are welcome! ❤️)

Example Usage

1. token_counter

from litellm import token_counter

messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))

2. cost_per_token

from litellm import cost_per_token

prompt_tokens = 5
completion_tokens = 10
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))

print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)

3. completion_cost

  • Input: Accepts a litellm.completion() response
  • Output: Returns a float of cost for the completion call
from litellm import completion, completion_cost

response = completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=messages,
request_timeout=200,
)
# pass your response from completion to completion_cost
cost = completion_cost(completion_response=response)
formatted_string = f"${float(cost):.10f}"
print(formatted_string)

4. get_max_tokens

  • Input: Accepts a model name - e.g. gpt-3.5-turbo (to get a complete list, call litellm.model_list)
  • Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token
from litellm import get_max_tokens 

model = "gpt-3.5-turbo"

print(get_max_tokens(model)) # {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}

5. model_cost

  • Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on community-maintained list
from litellm import model_cost 

print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...}