Completion Token Usage & Cost
By default LiteLLM returns token usage in all completion requests (See here)
However, we also expose 5 public helper functions to calculate token usage across providers:
token_counter
: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.cost_per_token
: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in__init__.py
and also as a community resource.completion_cost
: This returns the overall cost (in USD) for a given LLM API Call. It combinestoken_counter
andcost_per_token
to return the cost for that query (counting both cost of input and output).get_max_tokens
: This returns a dictionary for a specific model, with it's max_tokens, input_cost_per_token and output_cost_per_tokenmodel_cost
: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token List of all models (📣 This is a community maintained list. Contributions are welcome! ❤️)
Example Usage
1. token_counter
from litellm import token_counter
messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))
2. cost_per_token
from litellm import cost_per_token
prompt_tokens = 5
completion_tokens = 10
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
3. completion_cost
- Input: Accepts a
litellm.completion()
response - Output: Returns a
float
of cost for thecompletion
call
from litellm import completion, completion_cost
response = completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=messages,
request_timeout=200,
)
# pass your response from completion to completion_cost
cost = completion_cost(completion_response=response)
formatted_string = f"${float(cost):.10f}"
print(formatted_string)
4. get_max_tokens
- Input: Accepts a model name - e.g.
gpt-3.5-turbo
(to get a complete list, calllitellm.model_list
) - Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token
from litellm import get_max_tokens
model = "gpt-3.5-turbo"
print(get_max_tokens(model)) # {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}
5. model_cost
- Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on community-maintained list
from litellm import model_cost
print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...}